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Abstract

IMPORTANCE Screening for autism spectrum disorder (ASD) is constrained by limited resources,
particularly trained professionals to conduct evaluations. Individuals with ASD have structural retinal
changes that potentially reflect brain alterations, including visual pathway abnormalities through
embryonic and anatomic connections. Whether deep learning algorithms can aid in objective
screening for ASD and symptom severity using retinal photographs is unknown.

OBJECTIVE To develop deep ensemble models to differentiate between retinal photographs of
individuals with ASD vs typical development (TD) and between individuals with severe ASD vs mild
to moderate ASD.

DESIGN, SETTING, AND PARTICIPANTS This diagnostic study was conducted at a single tertiary-
care hospital (Severance Hospital, Yonsei University College of Medicine) in Seoul, Republic of Korea.
Retinal photographs of individuals with ASD were prospectively collected between April and October
2022, and those of age- and sex-matched individuals with TD were retrospectively collected
between December 2007 and February 2023. Deep ensembles of 5 models were built with 10-fold
cross-validation using the pretrained ResNeXt-50 (32×4d) network. Score-weighted visual
explanations for convolutional neural networks, with a progressive erasing technique, were used for
model visualization and quantitative validation. Data analysis was performed between December
2022 and October 2023.

EXPOSURES Autism Diagnostic Observation Schedule–Second Edition calibrated severity scores
(cutoff of 8) and Social Responsiveness Scale–Second Edition T scores (cutoff of 76) were used to
assess symptom severity.

MAIN OUTCOMES AND MEASURES The main outcomes were participant-level area under the
receiver operating characteristic curve (AUROC), sensitivity, and specificity. The 95% CI was
estimated through the bootstrapping method with 1000 resamples.

RESULTS This study included 1890 eyes of 958 participants. The ASD and TD groups each included
479 participants (945 eyes), had a mean (SD) age of 7.8 (3.2) years, and comprised mostly boys (392
[81.8%]). For ASD screening, the models had a mean AUROC, sensitivity, and specificity of 1.00 (95%
CI, 1.00-1.00) on the test set. These models retained a mean AUROC of 1.00 using only 10% of the
image containing the optic disc. For symptom severity screening, the models had a mean AUROC of
0.74 (95% CI, 0.67-0.80), sensitivity of 0.58 (95% CI, 0.49-0.66), and specificity of 0.74 (95% CI,
0.67-0.82) on the test set.

CONCLUSIONS AND RELEVANCE These findings suggest that retinal photographs may be a viable
objective screening tool for ASD and possibly for symptom severity. Retinal photograph use may
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Abstract (continued)

speed the ASD screening process, which may help improve accessibility to specialized child
psychiatry assessments currently strained by limited resources.
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Introduction

Autism spectrum disorder (ASD) is characterized by 2 core areas of symptoms: social communication
impairment and restricted and repetitive behaviors or interests.1 In 2020, the US Centers for Disease
Control and Prevention estimated that the prevalence of ASD was 1 in 36; this number continues to
grow, possibly due to increased awareness among the public, medical, and research communities.2,3

The 2019 Global Burden of Disease study reported an age-standardized global ASD prevalence of
369.39 per 100 000.4 Several ASD screening tools have demonstrated notable performance.5,6 For
example, the Modified Checklist for Autism in Toddlers is primarily based on caregiver report, with
sensitivity of 0.83 (95% CI, 0.77-0.88) and specificity of 0.94 (95% CI, 0.89-0.97)7; however,
caregiver assessment is influenced by one’s understanding of the child’s developmental milestones.8

The Social Attention and Communication Surveillance is conducted by trained professionals, and it
exhibits sensitivity of 0.96 (95% CI, 0.94-0.98) and specificity of 1.00 (95% CI, 0.99-1.00) for ages
12 to 42 months.9 The growing demands for ASD evaluation cannot be met with limited resources,
including trained specialists.10 In addition, because of the substantial time required to evaluate
individuals suspected of having ASD, inaccessibility to medical services has increased.11 Therefore,
objective ASD screening methods are increasingly needed.

Retinal photographs have been proposed as a potential objective screening tool for ASD, with
the theoretical background that the retina may be used to indirectly assess structural abnormalities
of the brain.12,13 Accordingly, retinal alterations in individuals with ASD have been observed
compared with individuals with typical development (TD).14-18 In a previous study, machine learning
models were developed to screen for ASD using retinal photographs, with reported sensitivity of
0.96 (95% CI, 0.76-1.00) and specificity of 0.91 (95% CI, 0.71-0.99).19 Nevertheless, these results
were difficult to generalize owing to the small number of participants. To our knowledge, there have
been no attempts to screen for ASD symptom severity using artificial intelligence despite the
observed association between retinal alterations and symptom severity.14,15

Although there are promising results with deep neural networks in various domains, they tend
to lack the ability to quantify predictive uncertainty and produce overconfident predictions.20 Thus,
we used deep ensembles to robustly estimate uncertainty and improve predictive performance.20,21

Accordingly, this study aimed to investigate whether retinal photographs can serve as an objective
screening tool for ASD and symptom severity by generating deep ensemble models with a larger
number of participants. Furthermore, we tested their possible use in a pediatric population via
sequential age-based modeling.

Methods

This diagnostic study was approved by the Institutional Review Board of Severance Hospital, Yonsei
University, Seoul, Republic of Korea. Written informed consent was obtained from all participants
with ASD. The consent requirement for individuals with TD was waived because retrospective and
deidentified data were used. The study followed the Standards for Reporting of Diagnostic Accuracy
Studies (STARD) reporting guideline.
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Participant Recruitment and Study Variables
Children and adolescents (aged <19 years) with ASD were recruited from the Department of Child
and Adolescent Psychiatry, Severance Hospital, Yonsei University College of Medicine, between April
and October 2022. Retinal photographs of age- and sex-matched control participants with TD were
retrospectively collected at the Department of Ophthalmology, Severance Hospital, Yonsei
University College of Medicine, between December 2007 and February 2023. A detailed description
of participant recruitment and the retinal imaging environment is provided in eMethods 1 in
Supplement 1.

We excluded individuals with ASD and a diagnosed major psychiatric disorder (eg, bipolar
disorder or conditions within the schizophrenia spectrum and other psychotic disorders), individuals
with TD and any psychiatric disorder (eg, ASD, attention-deficit/hyperactivity disorder, bipolar
disorder, or schizophrenia spectrum and other psychotic disorders), and individuals with a neurologic
illness (eg, epilepsy, encephalitis, demyelinating disease, or traumatic brain injury) or eye disease that
may affect the retinal fundus (eg, glaucoma, retinopathy of prematurity, or ophthalmic surgical
history). A participant flow diagram is presented in eFigure 1 in Supplement 1.

Symptom severity was assessed using Autism Diagnostic Observation Schedule–Second Edition
(ADOS-2) calibrated severity scores and Social Responsiveness Scale–Second Edition (SRS-2) T
scores. The cutoff for symptom severity was established at 8 for the ADOS-2 and 76 for the SRS-2,
according to previous publications.22,23 We evaluated the full-scale intelligence quotient (FSIQ) for
individuals with ASD. Assessment with the ADOS-2 and FSIQ is detailed in eMethods 2 in
Supplement 1.

Data Preprocessing
Retinal photographs were preprocessed by removing the noninformative area outside the fundus
circle and resizing the image to 224 × 224 pixels. When we generated the ASD screening models, we
cropped 10% of the image top and bottom before resizing because most images from participants
with TD had noninformative artifacts (eg, panels for age, sex, and examination date) in 10% of the
top and bottom.

Model Development
Deep ensembles offer advantages over single models because they exhibit superior performance and
a greater capacity to quantify predictive uncertainty.21 We used convolutional neural networks with
the ResNeXt-50 (32×4d) network as the backbone to construct classification ensemble models to
screen for ASD (ie, ASD vs TD) and ASD symptom severity (ie, severe vs mild to moderate symptoms)
using retinal photographs.24 The training process is described in eMethods 3 in Supplement 1. To
screen for ASD, we examined 2 settings: (1) differentiation between TD and ASD diagnosed solely
with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria1 and (2)
differentiation between TD and ASD diagnosed with the DSM-5 criteria and ADOS-2 scores. For ASD
symptom severity screening, we investigated 2 measurements: ADOS-2 calibrated severity scores
(�8 vs <8) and SRS-2 T scores (�76 vs <76).22,23

The data sets were randomly divided into training (85%) and test (15%) sets. We used 10-fold
cross-validation to obtain generalized results of model performance. Data splitting was performed at
the participant level and stratified based on the outcome variables. Because the data classes were
imbalanced for symptom severity (ADOS-2 and SRS-2), we performed a random undersampling of
the data at the participant level before conducting data splitting. Moreover, we examined different
split ratios (80:20 and 90:10) to assess the robustness and consistency of the predictive
performances across diverse splitting proportions.

To assess the feasibility of our approach in a pediatric population, we performed sequential
age-based modeling to screen for ASD. We initially built models using images from the youngest age
group within our sample, starting at age 4 years (ie, the minimum age group in our data set).
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Subsequently, we repeated this process, developing models for participants aged 5 years or younger,
then those aged 6 years or younger, and so on.

Uncertainty Estimation
We used a publicly available data set for uncertainty estimation as an out-of-distribution set
containing 1000 retinal photographs of 39 different fundus diseases.25 We excluded the 38 images
of healthy individuals without fundus disease because our data set contained images from individuals
with TD, resulting in the utilization of 962 images.

We calculated entropy to estimate the predictive uncertainty for each image in the test and
out-of-distribution sets. Entropy ranged from 0 to 1, with a larger value indicating a higher predictive
uncertainty. We hypothesized that entropies in the out-of-distribution data would be larger than
those in the test set because our models trained on images of individuals with ASD or TD would yield
higher uncertainty for out-of-distribution data.

Model Visualization and Quantitative Validation
We used score-weighted visual explanations for convolutional neural networks to explore the areas
deemed important for making predictions.26 The target layer was the final convolutional layer before
the pooling layer in ResNeXt-50 (32×4d). Because we constructed 5 models to create deep
ensembles, we averaged the 5 heat maps for each image. Subsequently, we used a progressive
erasing technique to quantitatively validate the explainability of the heat map.27,28 Model
performance was sequentially evaluated by gradually removing 5% of the least important parts
based on the averaged heat map. The eliminated parts of the image were filled with zeros, which
were equivalent to black.

Statistical Analysis
Differences in clinical variables between the 2 groups were assessed using independent t tests or χ2

tests. Mann-Whitney U tests were used to compare entropies between the test and out-of-
distribution sets. Additionally, classification performance was evaluated based on the area under the
receiver operating characteristic curve (AUROC), sensitivity, specificity, and accuracy.29 Calibration
performance was measured using the negative log-likelihood (NLL) and Brier score.30,31 Model
performance metrics were calculated at the participant level. We estimated the 95% CI for each
estimate using the bootstrapping method with 1000 resamples.

All statistical tests were 2 sided, and statistical significance was set at P < .05. All statistical
analyses were performed using Python, version 3.9.7 (Python Software Foundation), and all
classification models were implemented using PyTorch, version 1.12.0 (PyTorch Foundation). Data
analysis was performed between December 2022 and October 2023.

Results

Study Dataset
This study included 1890 eyes of 958 participants. The ASD and TD groups each included 479
participants (945 eyes), had a mean (SD) age of 7.8 (3.2) years, and comprised more boys (392
[81.8%]) than girls (87 [18.2%]). Of the 479 participants with ASD, 436 (91.0%) had an FSIQ reported
(mean [SD], 70.2 [20.5]). An ADOS-2 calibrated severity score was reported for 241 participants
(50.3%) with ASD (mean [SD], 7.0 [1.3]). All 479 participants (100%) with ASD had an SRS-2 T score
available (mean [SD], 86.2 [17.7]). Participant characteristics are summarized in Table 1.

Model Performance for ASD Screening
To differentiate between TD and ASD diagnosed solely with the DSM-5 criteria, 1890 retinal
photographs (945 each for TD and ASD) were included. The 10 models had a mean AUROC,
sensitivity, specificity, and accuracy of 1.00 (95% CI, 1.00-1.00) for the test set. These models had
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successful calibration performance, as indicated by a mean NLL of 0 and a mean Brier score of 0.
Classification and calibration performances were retained even when limited to ASD diagnosis using
DSM-5 criteria and ADOS-2 scores (Table 2). Notably, model performance was retained regardless
of the split ratio (eTable 1 in Supplement 1). Furthermore, our sequential age-based modeling
suggested that the predictive performance was retained in all age groups, even for those aged 4
years (eTable 2 in Supplement 1).

Model Performance for ASD Symptom Severity Screening
To screen for symptom severity measured with ADOS-2 calibrated severity scores, 305 retinal
photographs were used (154 for scores �8 and 151 for scores <8). The 10 models differentiated
severe ASD from mild to moderate ASD measured with the ADOS-2 at the participant level, with a
mean AUROC of 0.74 (95% CI, 0.67-0.80), sensitivity of 0.58 (95% CI, 0.49-0.66), specificity of 0.74
(95% CI, 0.67-0.82), and accuracy of 0.66 (95% CI, 0.60-0.73) for the test set. Regarding calibration
performance, the deep ensemble models (mean NLL, 11.76 [95% CI, 9.50-13.82]; mean Brier score,

Table 1. Participant Characteristics

Characteristic
Participants with ASD
(n = 479 with 945 images)

Participants with TD
(n = 479 with 945 images) P value

Age, mean (SD), y 7.8 (3.2) 7.8 (3.2) >.99

Sex, No. (%)

Male 392 (81.8) 392 (81.8)
>.99

Female 87 (18.2) 87 (18.2)

FSIQ

No. (%) 436 (91.0) NA
NA

Mean (SD) 70.2 (20.5) NA

Symptom severity

ADOS-2 calibrated severity score

No. (%) 241 (50.3) NA
NA

Mean (SD) 7.0 (1.3) NA

SRS-2 T score

No. (%) 479 (100) NA
NA

Mean (SD) 86.2 (17.7) NA

Abbreviations: ADOS-2, Autism Diagnostic
Observation Schedule–Second Edition; ASD, autism
spectrum disorder; FSIQ, full-scale intelligence
quotient; NA, not available; SRS-2, Social
Responsiveness Scale–Second Edition; TD, typical
development.

Table 2. Mean Performance of Cross-Validated Single Models and Deep Ensembles to Screen for ASD and Symptom Severity

Mean classification performance (95% CI) Mean calibration performance (95% CI)

AUROC Sensitivity Specificity Accuracy NLL Brier score
ASD vs TDa

Single model 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0 0

Deep ensemble 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0 0

ASD vs TDb

Single model 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.99 (0.99-1.00) 0.02 (0.00-0.05) 0.001 (0.000-0.001)

Deep ensemble 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0 0

ADOS-2 calibrated severity score
(≥8 vs <8)

Single model 0.67 (0.64-0.70) 0.58 (0.54-0.62) 0.67 (0.63-0.71) 0.62 (0.60-0.65) 12.99 (12.09-13.93) 0.38 (0.35-0.40)

Deep ensemble 0.74 (0.67-0.80) 0.58 (0.49-0.66) 0.74 (0.67-0.82) 0.66 (0.60-0.73) 11.76 (9.50-13.82) 0.34 (0.28-0.40)

SRS-2 T score (≥76 vs <76)

Single model 0.46 (0.43-0.48) 0.50 (0.47-0.53) 0.45 (0.42-0.48) 0.47 (0.45-0.50) 18.17 (17.45-18.96) 0.53 (0.51-0.55)

Deep ensemble 0.44 (0.38-0.50) 0.52 (0.46-0.59) 0.44 (0.38-0.51) 0.48 (0.44-0.53) 17.83 (16.31-19.44) 0.52 (0.47-0.56)

Abbreviations: ADOS-2, Autism Diagnostic Observation Schedule–Second Edition; ASD, autism spectrum disorder; AUROC, area under the receiver operating characteristic curve;
NLL, negative log-likelihood; SRS-2, Social Responsiveness Scale–Second Edition; TD, typical development.
a Diagnosis of ASD based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria only.
b Diagnosis of ASD based on both the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria and ADOS-2 scores.
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0.34 [95% CI, 0.28-0.40]) outperformed single models (Table 2). With the 80:20 split, the models
had a mean AUROC of 0.71 (95% CI, 0.52-0.90); with the 90:10 split, the models had a mean AUROC
of 0.79 (95% CI, 0.55-1.00; eTable 1 in Supplement 1).

To screen for symptom severity measured with SRS-2 scores, 556 retinal photographs were
used (277 for scores �76 and 279 for scores <76). The models failed to screen for SRS-2–based
symptom severity, with a mean AUROC of 0.44 (95% CI, 0.38-0.50), sensitivity of 0.52 (95% CI,
0.46-0.59), specificity of 0.44 (95% CI, 0.38-0.51), and accuracy of 0.48 (95% CI, 0.44-0.53) for the
test set (Table 2). The classification failed in all split ratios (eTable 1 in Supplement 1). The receiver
operating characteristic curves for both tasks are presented in eFigure 2 in Supplement 1.

Uncertainty Estimation
The models used to screen for ASD diagnosed with the DSM-5 criteria produced significantly lower
entropies for the test set than for the out-of-distribution set (mean [SD], 0.01 [0.03] vs 0.8 [0.2];
P < .001; Figure 1A). This trend was also observed in the models used to screen for ASD diagnosed
with the DSM-5 criteria and ADOS-2 scores for the test set and the out-of-distribution set (mean [SD],
0.02 [0.06] vs 0.6 [0.4]; P < .001; Figure 1B). However, the models used to screen for symptom
severity measured with ADOS-2 scores had high entropies for both the test set and the out-of-
distribution set (mean [SD], 1.0 [0.06] vs 0.9 [0.2]) (Figure 1C).

Model Visualization and Quantitative Validation
Figure 2 presents quantitative validation of the heat maps for ASD screening. There was no notable
decrease in the mean AUROC, even when 95% of the least important areas were removed,
regardless of the diagnostic method. Heat maps highlighted the optic disc area. However, 70% of the
image was needed to achieve a mean AUROC of 0.70 in screening for symptom severity using
ADOS-2 scores (Figure 3).

Discussion

The findings of this study suggest that retinal photographs may serve as a viable candidate for an
objective method to screen for ASD and possibly for symptom severity. The mean AUROC values for
ASD screening and symptom severity were 1.00 (95% CI, 1.00-1.00) and 0.74 (95% CI, 0.67-0.80),
respectively. Our results also support that the optic disc area is an important region in ASD screening.

Figure 1. Density Plots of Predictive Uncertainty on the Test and Out-of-Distribution (OOD) Sets
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Moreover, the models for screening ASD exhibited higher uncertainty for the out-of-distribution set
than for the test set with excellent calibration performance, implying that they could robustly
quantify predictive uncertainty.

Our models had promising performance in differentiating between ASD and TD using retinal
photographs, implying that retinal alterations in ASD may have potential value as biomarkers.
Interestingly, these models retained a mean AUROC of 1.00 using only 10% of the image containing
the optic disc, indicating that this area is crucial for distinguishing ASD from TD. Considering that a
positive correlation exists between retinal nerve fiber layer (RNFL) thickness and the optic disc
area,32,33 previous studies that observed reduced RNFL thickness in ASD compared with TD14-16

support the notable role of the optic disc area in screening for ASD. Given that the retina can reflect
structural brain alterations as they are embryonically and anatomically connected,12 this could be
corroborated by evidence that brain abnormalities associated with visual pathways are observed in
ASD. First, reduced cortical thickness of the occipital lobe was identified in ASD when adjusted for sex
and intelligence quotient.34 Second, ASD was associated with slower development of fractional
anisotropy in the sagittal stratum where the optic radiation passes through.35 Interestingly, structural
and functional abnormalities of the visual cortex and retina have been observed in mice that carry
mutations in ASD-associated genes, including Fmr1, En2, and BTBR,36-38 supporting the idea that
retinal alterations in ASD have their origins at a low level. However, in clinical practice, the question
extends beyond identifying ASD solely to also include ASD with attention-deficit/hyperactivity
disorder, other psychiatric disorders, and their combination.39-41 Further studies that involve
different neurodevelopmental or psychiatric disorders are needed to identify retinal alterations
specific to each disorder and develop a multiclassification model.

Despite its promising performance, the applicability of our approach to the pediatric population
remained a key concern given that the primary aim of ASD screening is early detection for timely
intervention.42,43 Our sequential age-based modeling suggested that retinal photographs may serve

Figure 2. Quantitative Validation of the Heat Map With the Progressive Erasing Technique
for Autism Spectrum Disorder (ASD) Screening

1.0

0.9

0.8

0.7

0.6

0.5

AU
RO

C 
w

ith
 m

as
ke

d 
im

ag
e

Fraction of erased image area

AUROCA

Progressive erasing exampleB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ASD (male,
age 6 y)

TD (male,
age 5 y)

Progressively erase the least important areas

ASD (DSM-5 only) vs TD
ASD (DSM-5 and ADOS-2) vs TD

A, Area under the receiver operating characteristic
curve (AUROC) with shaded 95% CI obtained from
masked images. B, Progressive erasing for ASD and
typical development (TD). ADOS-2 indicates Autism
Diagnostic Observation Schedule–Second Edition;
DSM-5, Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition.

JAMA Network Open | Psychiatry Development of Deep Ensembles to Screen for Autism and Symptom Severity

JAMA Network Open. 2023;6(12):e2347692. doi:10.1001/jamanetworkopen.2023.47692 (Reprinted) December 15, 2023 7/12

Downloaded from jamanetwork.com by Rutgers University Libraries user on 07/26/2024



as an objective screening tool starting at least at age 4 years. Moreover, the newborn retina continues
to develop and mature up to age 4 years.44,45 Taken together, our models are potentially viable for
screening children from this age onward, which is earlier than the average age of 60.48 months at
ASD diagnosis.46 However, this does not indicate that retinal photographs are not feasible for
individuals aged younger than 4 years. This question remains unexplored because the youngest age
group in our sample was 4 years. Retinal alterations in individuals with ASD may manifest even before
retinal maturation. Therefore, further research with participants aged younger than 4 years is
essential.

Our findings suggest that retinal photographs may provide additional information regarding
symptom severity. We observed that feasible classification was achievable only for ADOS-2 scores
and not for SRS-2 scores. This may be because the ADOS-2 is conducted by a trained professional
with ample time for assessment, whereas the SRS-2 is typically completed by a caregiver in a few
dozen minutes; thus, the former would reflect one’s severity status more accurately than the latter.
Proportional retinal alterations by symptom severity seemed robust given that the RNFL thickness in
a previous study14 was thinner in the group with high-functioning ASD (mean ADOS score, 14.2) than
in a group with Asperger syndrome (mean ADOS score, 10.4). Moreover, ASD with higher ADOS
scores was associated with the slower development of fractional anisotropy in the sagittal stratum.35

Limitations
This study had several limitations. First, we used a single-center data set, which may limit the generaliz-
ability of our findings. However, this allowed us to confirm the potential of retinal photographs as viable
candidates for screening tools for ASD by controlling the expected variability owing to retinal photogra-
phy settings.47 Future studies that use multicenter data sets would be beneficial. Second, retinal photo-
graphs may not be sufficient for screening symptom severity because they can only assess retinal al-
terations in a 2-dimensional space, whereas the retina is a 3-dimensional structure with multiple layers.

Figure 3. Quantitative Validation of the Heat Map With the Progressive Erasing Technique
for ADOS-2–Based Symptom Severity Screening
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Therefore, further studies using optical coherence tomography are warranted. Third, the medication
status of participants with ASD, which could have affected the retina, was not fully controlled. However,
there has been no corroborating evidence regarding the secondary changes in the RNFL or optic disc
related to the toxicity of atypical antipsychotic medications.48,49 Future studies involving medication-
naive patients with ASD are needed to investigate this relationship. Fourth, the exclusion of concurrent
medical, neurological, and psychiatric conditions suggests that our models may apply to only a portion
of individuals with ASD in clinical practice given that a substantial portion of ASD is associated with co-
existing conditions.39-41 However, this approach allowed us to investigate the association between ASD
and the retina while mitigating the potential influence of these conditions. Fifth, our models were lim-
ited to differentiating between individuals with ASD and TD; the primary challenge remains to distin-
guish ASD from a multitude of other neurodevelopmental or psychiatric disorders, which warrants fur-
ther investigation.

Conclusions

This diagnostic study examined the potential of deep learning algorithms to screen for ASD and
possibly symptom severity using retinal photographs. Our findings suggest that the optic disc area is
crucial for differentiating between individuals with ASD and TD. Although future studies are required
to establish generalizability, our study represents a notable step toward developing objective
screening tools for ASD, which may help address urgent issues such as the inaccessibility of
specialized child psychiatry assessments due to limited resources.
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